

Central Connecticut State University

S.C.A.D
Salary Cap and Dynasty Fantasy Football:

A Case Study on Building a Microservice-based Software System

CS-595 Capstone Final Report

Team Members:
Ramesh Kappera

Ryan Lauzon
Philip Murray

Advisor:

Dr. Neli Zlatareva

Table of Contents:

Acknowledgements

List of Tables and Figures

Abstract

1. Introduction
2. Development Methodology

2.1. Division of Labor
2.1.1. Overview
2.1.2. The SCAD Team

2.2. Communication Methods
2.2.1. Technologies and Timelines
2.2.2. Initial Discussions

2.3. Technology Stack
2.3.1. Vue.js for the Front-End/UI
2.3.2. Enterprise Java for the Back-End Services

2.4. Version Control Systems
2.4.1. Git and GitHub`
2.4.2. Multiple Repositories
2.4.3. Using the Feature Branch Pattern

2.5. Agile Development
2.5.1. User Stories
2.5.2. The Developer as a Product Owner
2.5.3. Being Agile with Agile

2.6. Building on Top of Yahoo
2.6.1. Pursuing Platform Independence
2.6.2. Changing Course
2.6.3. Yahoo as a Hard Dependency of SCAD

3. Software Architecture
3.1. Overview

3.1.1. SCAD as a Single Page Application
3.2. Monolithic vs. Microservice-based Architectures

3.2.1. At a High Level
3.2.2. Componentization of SCAD
3.2.3. Benefits and Drawbacks

3.2.3.1. Organization of teams around business functions rather than
infrastructure

3.2.3.2. Need for centralized data stores
3.2.3.3. Relevance of rapid development and deployment between components

4. Implementation
4.1. Development Environments

4.1.1. Efficiencies of Using Microservices
4.1.2. Inefficiencies of Using Microservices

2

4.1.3. Logging
4.2. Security

4.2.1. Challenges of Securing Microservices
4.2.2. OAuth2
4.2.3. OpenIDConnect
4.2.4. Decoding JSON Web Tokens
4.2.5. Basic Authentication

4.3. Code Base
4.3.1. Front-end/User Interface
4.3.2. Node.js Microservice
4.3.3. JEE Microservice
4.3.4. Swagger

4.4. Data Models
4.4.1. Disjointness of SCAD’s Models and Yahoo’s Models
4.4.2. Relational Model
4.4.3. Hibernate
4.4.4. Cleaning Yahoo’s Raw Data
4.4.5. JAX-RS
4.4.6. From Request to Response

4.5. REST Services
4.5.1. Endpoints
4.5.2. Error and Exception Handling
4.5.3. Email

4.6. User Interface
4.6.1. Landing Page
4.6.2. Register League Page
4.6.3. Dashboard Page
4.6.4. League Settings Page
4.6.5. Team Page
4.6.6. Cap Exemption Page
4.6.7. Draft Picks Page
4.6.8. Players Page
4.6.9. My Profile Page

5. Conclusion
5.1. Technical
5.2. Human

6. References

3

Acknowledgements
We are grateful to Dr. Neli Zlatareva for providing our team with guidance and support, and for being
kind and patient enough to listen to more fantasy football musings than she probably ever imagined she
would in a lifetime.

4

List of Tables and Figures

5

Table 2.2.1 Basic project timeline for the development of SCAD. 12

Figure 2.2.2 Whiteboarding photos of initial meetings. 13

Figure 2.5.1 Trello board used to facilitate agile techniques. 15

Figure 2.5.3 Illustration the immediate feedback loop possible with Slack. 16

Figure 3.2.2 Monolithic vs. microservice-based architecture. 19

Figure 3.2.3 Schematic diagram of three microservices that comprise SCAD. 21

Table 4.1.1 Technology stacks in development for SCAD. 22

Figure 4.1.3 Code snippet from SCAD’s HeaderHelper class illustrating logging. 23

Figure 4.2.2 SCAD’s OAuth2 implementation. 25

Figure 4.2.3 Execution flow for SCAD’s dashboard homepage. 26

Figure 4.2.4 Java code snippet for JWT verification. 27

Figure 4.2.5 Thorntail configuration for basic authentication. 28

Figure 4.2.5a JEE web application server configuration for basic authentication. 28

Figure 4.3.1 Breakdown of SCAD’s front-end/UI code base by file type. 29

Figure 4.3.1a Content of index.html. 29

Figure 4.3.1b Directory structure of SCAD’s front-end/UI microservice. 39

Figure 4.3.2 Breakdown of SCAD’s Node.js code base repository. 31

Figure 4.3.2a Directory structure of SCAD’s Node.js microservice. 31

Figure 4.3.3 Breakdown of SCAD JEE backe-end code base. 32

Figure 4.3.3a Directory structure of SCAD’s JEE back-end microservice. 33

6

Figure 4.3.3b Structure of Java classes in SCAD’s edu.ccsu.cs595.capstone.scadservices package. 34

Figure 4.3.4 Java code in SCAD’s SCADLeagueApi.java file. 36

Figure 4.3.4a GUI tool created by Swagger. 37

Figure 4.3.4b Screenshot of Swagger’s sample response. 38

Figure 4.3.4c Snippet of SCAD’s pom.xml file showing inclusion of Swagger tool. 38

Figure 4.4.1 Raw JSON returned from a direct REST call made to Yahoo’s league API. 39

Figure 4.4.1a JSON payload returned from a REST call made to SCAD’s league API. 40

Figure 4.4.2 Entity-relationship diagram of SCAD’s relational database. 42

Figure 4.4.3 Snippet from SCAD’s pom.xml illustrating Hibernate ORM inclusion. 43

Figure 4.4.3a Snippet from persistence.xml illustrating Hibernate, MySQL, and entity linkage. 43

Figure 4.4.3b Snippet from EntityMangerProducer class illustrating Hibernate’s entry point. 43

Figure 4.4.4 JSON payload returned from one of SCAD’s “cleaning” endpoints. 44

Figure 4.4.5 Code snippet from SCAD’s DashboardApi interface, illustrating JAX-RS. 45

Figure 4.4.5a Code snippet of RequestCORSFilter class, illustrating JAX-RS hooks. 46

Figure 4.4.6 A high-level sequence diagram showing SCAD’s rendering of the “dashboard” page. 47

Figure 4.4.6a Code snippets illustrating layer 1 of SCAD’s 5 logical layers. 48

Figure 4.4.6b Code snippet from SCADLeagueService illustrating layer 3. 49

Figure 4.4.6c Code snippet from SCADLeagueDao illustrating layer 4. 50

Figure 4.4.6d Code snippet from javax.persistence.EntityManager class illustrating level 5. 50

Figure 4.4.6e A sequence diagram showing the flow of execution through all 5 logical layers. 51

7

Figure 4.4.6f A “formatting” method located in SCAD’s service layer. 52

Figure 4.4.6g A sequence diagram showing the process of serving a request for a Yahoo league. 52

Table 4.5.1 Relative urls and descriptions of SCAD’s 45 RESTful endpoints. 55

Figure 4.5.2 Sequence diagram illustrating conversion of exceptions into 400-level responses. 56

Figure 4.5.2a Sample JSON payload of a 404 response returned. 57

Figure 4.5.3 UML diagram showing the basic adapter pattern used to implement SCAD’s email. 58

Figure 4.6.1 Screenshot of SCAD’s landing page (first half). 59

Figure 4.6.1a Screenshot of SCAD’s landing page (second half).. 59

Figure 4.6.2 Screenshot of SCAD’s registration page. 60

Figure 4.6.2a Screenshot of SCAD’s registration page for non-commissioners. 60

Figure 4.6.3 Screenshot of SCAD’s dashboard page. 61

Figure 4.6.4 Screenshot of SCAD’s league settings page. 61

Figure 4.6.5 Screenshot of SCAD’s team page (top half). 62

Figure 4.6.5a Screenshot of SCAD’s team page (bottom half). 62

Figure 4.6.6 Screenshot of SCAD’s cap exemption page. 63

Figure 4.6.7 Screenshot of SCAD’s draft picks page. 64

8

Figure 4.6.8 Screenshot of SCAD’s players page. 64

Figure 4.6.9 Screenshot of SCAD’s profile page. 65

Abstract
The fantasy football industry produces $15 billion in yearly revenue with 50 million participants
worldwide . The top two dominant fantasy football companies are Yahoo® and ESPN®, respectively, 1

accounting for over 50% of market share. 2

Today, neither Yahoo nor ESPN possesses a salary cap feature. A salary cap is a dollar amount indicating
the maximum sum of all individual players’ salaries for a specific team. It is a mechanism used in
professional sports for promoting parity among teams in differing economic markets, preventing the
creation of “super teams” that become great by simply outbidding all competitors for top athletes.

The heretofore uncaptured entertainment value that a salary cap feature can provide to the fantasy football
world is the impetus for SCAD - Salary Cap and Dynasty Fantasy Football Software Application, the
subject of this paper.

SCAD provides a new format that allows users to retain their teams from season to season. Such team
retainment comes with salary cap restrictions. Each player has an associated salary, and users construct
their teams in such a way that the aggregate salaries of the players is less than a predetermined value, the
salary cap.

It is worth noting that SCAD’s salary cap feature, although nominally concerned with “money”, does not
involve real money at all, nor are the players’ salaries in SCAD reflective of their actual salaries. The
money aspect of SCAD is akin to Monopoly® money.

SCAD adds realism and sophistication to the game, increases entertainment value, necessitates new
strategies for success, and fulfills a significant market demand in the fantasy football sphere. Simply
stated, SCAD makes fantasy football more fun.

1 Goff, Brian. “The $70 Billion Fantasy Football Market”
https://www.forbes.com/sites/briangoff/2013/08/20/the-70-billion-fantasy-football-market/#4a1cbc6755c4.
Forbes Inc. Aug 20, 2013 web.
2 Blacker, Adam, “Fantasy Football Players Declining in US”
https://blog.apptopia.com/fantasy-football-players-declining-in-u.s Aptopia, October 22, 2018 web.

9

1. Introduction
This report details the development approach, project management methodology, software architecture,
and technical details of SCAD. It constitutes one of three deliverables of the final Capstone project, the
other two being a presentation, and the application itself.

The first quarter of the report chronicles the development process and describes the methodology used by
our team to build SCAD. It includes the rationale for choosing (and in some cases changing) our team’s
communication methods, versioning system, and agile techniques. It also discusses a fundamental design
decision our team is presented with regarding whether SCAD is best served as a platform-independent
web application or one that is inexorably linked to Yahoo.

The second quarter of the report is dedicated to SCAD’s software architecture; its single page design, its
back-end services, and its microservice-based architectural pattern. Here, monolithic and
microservice-based architectures are compared, and the “componentization” of SCAD is discussed as the
deciding factor for choosing one over the other.

The final half of the report details SCAD’s implementation details. It begins with the tedious yet
impactful process of configuring development environments. Next is a deep dive into SCAD’s security
components, including how and why SCAD uses OAuth2 and OpenIDConnect for authorization and
authentication, how JSON Web Tokens are decoded, and how Basic Authorization, configured in the JEE
server, supplies an additional layer of security.

Following the security segment is a description of the code base itself (languages, frameworks, directory
structure, etc.) and a detailed look at the data models employed, including how mappings are constructed
between relational tables, entity objects, data transfer objects, and serializable JSON strings. Then, the
implementation details of the REST endpoints themselves are explained, including the nomenclature and
structure of each endpoint and the sequence of events that transpire upon serving various types of web
requests, including exception handling.

Finally, the user interface is detailed with a description of the purpose, functionality, and pertinent data of
each of SCAD’s front-end pages.

10

2. Development Methodology

2.1 Division of Labor

2.1.1 Overview

Building SCAD in five months is both a technical undertaking and a project management challenge. We
immediately see how the proper division of labor between SCAD’s three developers is key in determining
the success of the project.

2.1.2 The SCAD Team

Ramesh Kappera is veteran software developer with over a decade of professional experience working on
enterprise systems. He assumes the role of “technical lead”, and the SCAD team relies heavily on his
expertise to write code and make determinations about whether something is technically feasible.

Philip Murray is a software developer with a penchant for technical writing. He plays a supporting role to
Ramesh in writing the back-end code for SCAD, and he plays a leading role in writing the technical
documentation for the system.

Ryan Lauzon is a software developer who is also the domain expert in fantasy football. He takes the lead
in writing the front-end/UI code, and plays the role of product owner. The SCAD team relies exclusively
on Ryan to determine whether SCAD’s functional requirements have been satisfied.

2.2 Communication Methods

2.2.1 Technologies and Timeline

Slack® serves as the primary communication platform for SCAD’s team members. Skype® and
BlueJeans® are used for video conferencing. In-person meetings between all three developers occur once
per week at CCSU or online.

The preliminary project timeline is shown below.

11

Week Activity

1 Set up a development environment (IntelliJ, Eclipse, Git Repository, etc.)

2 Set up project management and db maintenance technologies (Liquibase, Trello, etc.)

3 Refine object models using domain driven design (UML, ER charts etc.)

4 - 7 Application development

 Table 2.2.1

Basic project timeline for the development of SCAD

2.2.2 Initial Discussions

Initial discussions are dedicated to fleshing out the data models and conveying an understanding of the
appropriate verbiage used in fantasy football. What exactly is a league? A team? Is there a difference
between a user and a player? Etcetera.

These discussions last nearly one month, and the SCAD team relies heavily on Ramesh’s experience with
building custom systems to guide the timeline. Ramesh emphasizes the dual purpose served by these
meetings. First, they help Philip and Ramesh gain an understanding of the fantasy football domain.
Second, they compel Ryan, the domain expert, to remain internally consistent in his explanations.

From these meetings emerges what is essentially a miniature DSL (domain specific language) where
terms like “roster”, “team”, “league”, “player”, “game”, and “season” now connote SCAD-specific details
immediately understood by all three developers.

12

8 Complete a minimum viable product

9 - 12 Application development

13 Complete a finalized product ready for testing

14 - 17 Finalise report and presentation

Figure 2.2.2
Collage of whiteboard photos of initial meetings of SCAD developers.

2.3 Technology Stack

2.3.1 Vue.js for the Front-End/UI

Vue.js is a modern JavaScript framework (compiled with Webpack) developed as a light-weight
alternative to Angular.js and React.js. Ryan chooses Vue.js to build SCAD’s front-end/UI, because of his
familiarity with the technology and its conduciveness to building single-page web applications (SPA).

2.3.2 Enterprise Java and Node.js for the Back-End Services

Enterprise Java (JEE) in the Thorntail runtime environment is chosen as the primary back-end technology.
JEE is familiar to both Ramesh and Philip, and although the capabilities of the Java Spring framework is
considered more appropriate to build SCAD (because of easier dependency management), we opt for JEE,

13

because Philip is unfamiliar with Spring and the estimated time required for Philip to become proficient
with Spring does not justify the efficiency gains of using Spring over JEE.

JavaScript in a Node.js runtime environment is chosen as a secondary back-end technology. Node.js is
familiar to Ryan and integrates readily with MongoDB. It also carries the advantage of having the
front-end/UI code and back-end code written in the same language (JavaScript).

2.4 Version Control Systems

2.4.1 Git and Github

To keep track of SCAD’s source code, we use Git VCS and store the repositories on GitHub®, primarily
because of the teams’ familiarity with the technologies as well as Git’s native integration to each team
member’s IDE.

2.4.2 Multiple Repositories

Three separate GitHub repositories are used, one for the user interface, and the other two for the back-end
microservices. Their locations are as follows:

1. User Interface: https://github.com/ccsu-grad-capstone/scad-ui.git
2. JEE Back-End: https://github.com/ccsu-grad-capstone/scadservices.git
3. Node.js Back-End: https://github.com/ccsu-grad-capstone/scad-node.git

We choose to separate source code repositories to maintain the proper microservice architecture,
discussed in detail in chapter 3.

2.4.3 Using the Feature Branch Pattern

SCAD’s repositories maintain a “master” branch into which a “development” branch is merged
approximately once per month by Ramesh. The “development” branch is considered the branch of record,
from which we create feature branches and to which we merge completed features.

Our motivation for using the feature branch pattern is familiarity and simplicity. Working off of the
“development” branch directly could lead to complications from merge conflicts, but anything more
sophisticated than the feature branch pattern is unnecessary for a project of SCAD’s size and scope.

2.5 Agile Development

2.5.1 User Stories

14

To develop SCAD using agile techniques, we use a Trello® board with four columns to track a backlog of
user stories and their implementations.

Figure 2.5.1
A screenshot of the Trello® board used to facilitate agile techniques used in building SCAD.

2.5.2 The Developer as the Product Owner

Since Ryan is both SCAD’s product owner and one of SCAD’s developers, and since the team consists of
only three people, we find many of the conventional benefits of using agile approaches to be irrelevant.
For example, as we develop the REST endpoints to return JSON data in a desired format for Ryan to
consume on the front-end, it is almost comically inefficient to keep adjusting the Trello® board, rather
than simply having Philip and Ramesh converse with Ryan on an as-needed basis.

2.5.3 Being Agile with Agile

As the project progresses, we keep agile techniques that are working, and we abandon those that are not.
We find that the most pertinent aspect of the agile manifesto for SCAD is the importance of keeping in
constant contact with the product owner.

15

Figure 2.5.3
A short conversation between a SCAD developer and product owner, illustrating the immediate feedback
loop of communication made possible by SCAD’s small team size. Such conversations obviate the need

to use more sophisticated agile tools.

2.6 Building on Top of Yahoo

2.6.1 Pursuing Platform Independence

A lofty initial goal for SCAD is platform independence. That is, SCAD should not be dependent on any
particular fantasy football vendor (e.g. Yahoo or ESPN). Although, in general, SCAD must depend on a
pre-existing fantasy football vendor (to gather player data, statistics, etc.), the choice of vendor should be
a configurable component of SCAD.

As we begin designing SCAD’s database schema, the magnitude of the challenge of pursuing platform
independence becomes clear.

To achieve platform independence, SCAD can either fully integrate with other vendors, or, more
realistically, can simply gather the fantasy football data from another platform (e.g. Yahoo or ESPN®),
and incorporate the data into SCAD’s own fantasy football workflow.

As we pursue the latter course, we find ourselves spending virtually all of our development time building
routine fantasy football features that already exist in every other platform (creating leagues, determining
game days, etc.). It dawns on us that we are doing little more than “reinventing Yahoo’s wheel”.

2.6.2 Changing Course

At a weekly meeting, Ryan suggests a major change, that we abandon the pursuit of platform
independence and build SCAD on top of Yahoo’s APIs. He argues that 1) Yahoo has an existing API
infrastructure created specifically for developers such as ourselves, and building SCAD on top of these
APIs will prevent any “wheel reinvention”, 2) Creating a platform-independent SCAD in our timeline is
not doable.

16

Ramesh and Philip agree.

2.6.3 Yahoo as a Hard Dependency of SCAD

SCAD can now be considered an enhanced version of Yahoo fantasy football, and SCAD’s developers
now have a more tangible paradigm upon which to make decisions. There are numerous benefits to
building SCAD in this manner, three of which are described below.

1. Yahoo stores all of the data: SCAD no longer has to maintain a database with dozens of tables
of user data. Now, in lieu of creating proper SQL queries (or Hibernate queries) and concerning
ourselves with joins, views, and the complications of maintaining relational integrity, we simply
“query” Yahoo’s REST endpoints to obtain JSON representations of the data, and let Yahoo
handle all of the storage intricacies.

2. Domain modeling has already been done: Yahoo has a tried-and-tested domain model of
fantasy football resources (e.g. league, game, player, team, transaction, etc.). Without using these,
the nuances of creating a domain model from scratch are surprisingly difficult. For example, the
relationship between a “team” and its “players” is not trivial. It requires an intermediary data
structure called a “roster” which has a 5-field unique key {league, game, team, season, week}.

3. Yahoo has solved and documented the most common problems: APIs for basic
web-application plumbing such as authenticating users and authorizing their access to data are
readily available. We tap into these to secure SCAD using OAuth2 and OpenIDConnect, two
protocols discussed in detail in chapter 4.

Upon the completion of each new feature, our decision to abandon platform independence and build on
top of Yahoo is further validated. In fact, we begin to recognize our naivete in thinking we could do it any
other way.

We strive to release version 1.0.0 of SCAD with a complete disjointness of SCAD-specific and
Yahoo-specific features, achieving a level of modularity in the code that can easily be built upon in years
to come.

17

3. Software Architecture

3.1 Overview

3.1.1 SCAD as a Single Page Web Application

SCAD is a single page web application (SPA) that communicates with back-end REST services. It
employs a microservice architecture, a variant of service-oriented architecture (SOA). Microservices have
gained popularity in recent years, and their ascendancy can largely be attributed to shortcomings in the
monolithic applications which preceded them.

3.2 Monolithic vs. Microservice-based Architectures

3.2.1 At a High Level

At a very high level, a monolithic web application is one whose capabilities are contained in a single
logical unit. In the Enterprise Java landscape, this single unit is typically a .war (web archive) file
containing every capability of the application. The .war file is tagged, distributed, and deployed as a
single entity and is thought of as the legal “version of reference” for a particular build of the application.
For example, were we to use a monolithic architecture for SCAD, our first deliverable, SCAD v 1.0.0
would be a single .war file containing all of SCAD’s functionality. Any change, however small, would
necessitate a new build, a new version (e.g. SCAD v 1.0.1), and a new deployment of the entire
application.

3.2.2 Componentization of SCAD

While monolithic applications contain components, their componentization is largely invisible to the user
and includes such things as third-party library .jar files and database drivers.

On the contrary, a microservice-based web application is one whose capabilities are componentized at the
user level. By “user level”, we are referring to components that can be easily conceptualized from the
end-user’s perspective. For SCAD, our user-level componentization breaks down the application into
three microservices, two that serve fantasy football data, and one that consumes and processes fantasy
football data. Clearly, this componentizing is occurring at the user level (after all, SCAD’s users are
fantasy football players).

18

Figure 3.2.2
Schematic diagram of a monolithic vs. microservice architecture illustrating the domains (grey boxes),

web servers (“www”), data sources (“DATA”), application software (light blue boxes), and source code
repositories (green boxes).

3.2.3 Benefits and Drawbacks

The benefits and drawbacks of using a microservice-based architecture over a monolithic architecture are
numerous, and whether one is more desirable than the other depends in large part on three factors.

3.2.3.1 Organization of teams around business functions rather than infrastructure: In companies
where teams are organized around technologies and technology layers (e.g. UI/UX, data, middleware), a
monolithic architecture is warranted. If a company is more effective when organizing its teams around
particular business functions (customer service, product delivery, shipping etc.), microservices are likely
more appropriate.

In building SCAD, we realize this benefit to a certain extent by placing Ryan, our main domain expert, in
charge of the front-end microservice that contains the code requiring the most amount of domain-specific
knowledge (i.e. expertise in fantasy football).

Although building the back-end microservices requires a modicum of fantasy football know-how, the
“business function” around which they are built is predominantly data-retrieval and data-transfer of
fantasy football data as opposed to the intricacies of the fantasy football game itself. As such, placing
Ramesh and Phil, who are not domain experts, in charge of the back-end microservices is appropriate.

19

It is worth noting that while we certainly see how microservices can be conducive to organizing teams
around business functions rather than technologies, our team of three developers is too small to attribute
any of SCAD’s successes or failures to this aspect.

3.2.3.2 Need for centralized data stores: Each microservice in a microservice-based application
possesses its own independent datastore, whereas in a monolithic application, there is one datastore with
which all internal components communicate. An application is conducive to using a microservice-based
architecture if it can be logically broken down into business-relevant components that do not require
access to common data (e.g. a specific table in a relational database). If a system’s components work best
by accessing a common data source, then a monolithic architecture is preferable.

In SCAD, there are two traditional and one non-traditional data stores. The traditional data stores are a
relational database (MySQL) located in the JEE back-end microservice and a document database
(MongoDB) in the Node.js back-end microservice. They contain SCAD-specific league configurations as
well as salary-related player information.

The non-traditional data source is Yahoo itself. Yahoo is a hard dependency of SCAD, and because all
SCAD users are Yahoo users, careful consideration has to be taken when designing SCAD’s database
schema to ensure that any changes a SCAD user makes via Yahoo do not have to be duplicated in SCAD.
A guiding motto of our team is “Don’t reinvent Yahoo’s wheel.”

Two points regarding SCAD’s use of microservices should be made. First, because of how tightly coupled
our system is to Yahoo, our design efforts are less about splitting SCAD’s functionality into proper
microservices and more about retrofitting our data models around Yahoo’s data store to become
microservices. Second, our front-end microservice requires no datastore at all, making it a prime
candidate for a microservice.

3.2.3.3 Relevance of rapid development and deployment between components: Deployments of
different microservices in a microservice-based application are completely independent of one another.
The microservices have different source code repositories, different continuous integration pipelines, and
the frequency with which one microservice is upgraded has no bearing on that of the others. This
characteristic is beneficial if certain components of an application are expected to require more upgrades
and maintenance than others.

For example, consider an application where one component is sufficiently stable that it requires upgrades
only once per year, while another requires daily maintenance and enhancements. Under a monolithic
architecture, the stable component will be redeployed every day alongside the other, slowing down build
times. This can be particularly inefficient if new builds undergo extensive testing routines prior to
deployment. If the stable component was self-contained in its own microservice, no such waste would
exist, and delivery speed would increase.

In SCAD, both the UI/front-end microservice and the back-end microservices are built from scratch, so
the time-to-deploy aspect is not relevant. However, we do get a glimpse of this efficiency gain when we
consider how much simpler it is to handle the source control versioning (Git) of the back-end
microservices by themselves compared to what it would be if the other repositories’ code was also

20

present. The commit histories of SCAD’s back-end services are smaller and easier to process for the
developers. This is because, by the very nature of microservices, all changes committed to source control
by a developer are relevant to the component being worked on.

Figure 3.2.3
Schematic diagram of the three microservices that comprise SCAD. Notice that, other than the

microservices’ business relationship to SCAD, they are completely independent pieces of software.

21

4. Implementation

4.1 Development Environments

4.1.1 Efficiencies of Using Microservices

A major benefit of using a microservice-based architecture to build a system is the ease with which the
system’s development teams can be organized. Contrary to a monolithic architecture, team members
working on a microservice-based system require virtually no information about system components other
than the one they are working on. In fact, it is common for different microservices of the same system to
be written in different languages, hosted in different environments, or even developed by different
organizations altogether.

Our team of three developers realize some of these efficiencies, although numerous unsuspected
inefficiencies also present themselves. Table 4.1 details the technologies we use to develop SCAD’s three
microservices; the front-end/UI, the JEE back-end, and the Node.js back-end.

Table 4.1.1

Technology stacks in development for SCAD’s front-end/UI and back-end/REST services.

Decoupling the front-end/UI and back-end/REST services allows SCAD’s developers to select their
preferred choice of language and framework, version control system, and other development-related
tooling technologies.

22

 Front-end/UI Back-end/REST Services

Developers Ryan Ryan, Ramesh, Phil

Language/Framework JavaScript/Vue.js Java/JEE, JavaScript

Development App server Webpack/Node.js Thorntail/WildFly Swarm, Node.js

Build tool/package manager npm maven, npm

Source code repository https://github.com/ccsu-grad-cap
stone/scad-ui.git

https://github.com/ccsu-grad-capstone/
scadservices.git,

https://github.com/ccsu-grad-capstone/
scad-node.git

IDE Visual Studio (Ryan) IntelliJ (Phil), Eclipse (Ramesh),
Visual Studio (Ryan)

4.1.2 Inefficiencies of Using Microservices

We find it easy to imagine how using a microservice-based architecture facilitates the development
process for large projects. However, we are not convinced that going the microservice route results in a
net gain in any development efficiencies for SCAD. This is because we find practical complications that
are not obvious prima facie.

As an example, for Ryan, our front-end developer, mocking the JSON results of REST calls made to
SCAD services greatly simplifies his development workflow. Ramesh and Phil, our back-end developers,
use a tool (Swagger API) that, with a simple annotation, can provide Ryan with precisely these mocks.
However, since Ryan’s component is completely decoupled from Ramesh’s and Phil’s, getting Swagger
up and running requires Ryan to install and run virtually all of the development software that runs on
Ramesh and Phil’s machine, nullifying any development efficiencies that supposedly come from using
microservices.

While solutions do exist for resolving these development inefficiencies (e.g. deploy Swagger on a shared
environment and use Github hooks to redeploy it when new code is pushed), their implementation does
not appear to be worth the effort.

Ultimately, we find that the most efficient approach is to simply set up all environments (UI and REST
services) on all developer machines.

4.1.3 Logging

When beginning to physically write the code for SCAD, we make the up-front investment in time to
surround the functional code with logging code that will output to the server console. To do this we use
the org.slf4j package as shown below.

 Figure 4.1.3
Code snippet from SCAD’s HeaderHelper class illustrating the use of the org.slf4j package for logging

(highlighted in green).

23

package edu.ccsu.cs595.capstone.scadservices.util;

import org.slf4j.Logger;
import org slf4j.LoggerFactory;
public class HeaderHelper {

 private static final Logger LOG = LoggerFactory.getLogger(DashboardService.class);

 pubic Response isHeaderAccessValid(SCADSecurityManager sm) throws RuntimeException {
 if ((Objects.isNull(sm.getIDTOKEN()))) || (Objects.isNull(sm.getACCESSTOKEN()))) {
 return Response.status(Response.Status.UNAUTHORIZED).entity(“Missing SCAD token”);
 }

 LOG.info(“Passed valid ID and Access Tokens in URL header”);
 return null;
 }
}

Logging SCAD’s behavior in this manner becomes increasingly important as the code base grows larger.
It makes debugging significantly easier and provides insight into the sequence of events occurring during
the execution of SCAD’s code.

4.2 Security

4.2.1 Challenges of Securing Microservices

SCAD’s microservice-based architecture, while simplifying certain aspects of our system, complicates
others. Case in points are identity and access control (e.g. authentication and authorization). Both are
integral aspects of SCAD, and in monolithic applications, they are typically implemented with
industry-standard, straightforward approaches (e.g. server-side session storage, browser cookies, etc.).
However, in the realm of microservice-based applications, no such approach exists, and implementing
identity and access control becomes surprisingly complex.

To illustrate this complexity, consider our team’s initial proposal to authenticate users with a standard
form-based login page and a “user” table in our database. SCAD’s core functionality is built on top of
Yahoo’s API, so the following questions immediately present themselves:

1. Can a user create a SCAD account without a Yahoo account?
2. Can a user be authenticated with SCAD but not Yahoo? If so, will the application work?
3. What if the user changes their Yahoo credentials? Will they also have to change SCAD’s?
4. Will SCAD have inappropriate permissions to a user’s Yahoo account (e.g. their stock picks etc.).

We find that traditional, form-based authentication and authorization solutions do not address the
questions above in a manner that is not prohibitively cumbersome to SCAD’s end users.

4.2.2 OAuth2

Consistent with our overarching theme of “not reinventing Yahoo’s wheel” SCAD solves the access
control problem with OAuth2, a modern protocol that allows applications like SCAD to access a
restricted portion of a Yahoo user’s data (e.g. their fantasy football information) without ever having the
Yahoo user’s login credentials pass through SCAD’s system (see Figure 4.2.2).

24

Figure 4.2.2
SCAD’s OAuth2 implementation

25

Figure 4.2.2 details the relevant aspects of the HTTP requests and responses that occur during SCAD’s
implementation of OAuth2. The end user initiates the OAuth2 protocol by clicking “Login” (not shown).
This is followed by a series of requests and responses (steps 1 - 5) between the user’s browser and
Yahoo’s authorization server where the user authenticates with Yahoo. Note that in steps 1 through 5, no
traffic passes through any of SCAD’s servers, and except for the initial request, no SCAD code is
executed. Consequently, from SCAD’s point of view, the user is “authentic” only insofar as Yahoo deems
them to be so.

In step 6, following the 302 redirect response, the browser sends a GET request to SCAD’s Node.js server
along with a “code” query parameter (obtained from Yahoo in step 5). A JavaScript routine running on
SCAD’s Node.js server combines the value of this “code” with SCAD’s “client_id” and “client_secret”
into a POST request sent to Yahoo’s /get_token endpoint, which returns the access token and id token at
the heart of the OAuth2 protocol.

A question immediately arises. Why is it necessary to pass through the Node.js server?

The answer is that without going through a back-end channel (e.g. SCAD’s Node.js server), implementing
OAuth would require storage of SCAD’s client id and client secret on the user’s browser. Doing so would
allow anyone to impersonate SCAD from the perspective of Yahoo, a significant security vulnerability.
To Yahoo, API requests containing SCAD’s client id and client secret are SCAD requests.

4.2.3 OpenIDConnect

SCAD solves the identity problem with OpenIDConnect, a protocol built on top of OAuth2 that, at its
essence, provides SCAD with user information in the form of a JSON Web Token (JWT). A verified
JWT, while not necessarily encrypted, is guaranteed to be authentic. In other words, a verified JWT is a
guarantee to SCAD that, according to Yahoo, the user is who they claim to be.

Figure 4.2.3
Execution flow for SCAD’s “dashboard” homepage, which involves a REST call to SCAD’s user

endpoint and the verification of a JWT.

26

Figure 4.2.3 illustrates the REST call made to SCAD’s “/user” endpoint that occurs as part of rendering
the dashboard landing page. The value of the “id_token” query parameter is the JWT, which we parse and
verify prior to using the data in its payload portion.

4.2.4 Decoding JSON Web Tokens

A JWT is a Base64-encoded character string with three, dot-separated sections: 1) a header section, 2) a
payload section, 3) a signature. To verify a Yahoo JWT, we first decode the header and retrieve the
algorithm and public key id (kID). Then, an HTTP request is sent to Yahoo’s /openId/v1/certs endpoint to
retrieve a list of Yahoo’s public keys. The public key with matching (“alg”, “kID”) values is selected, and
x and y values are retrieved from the public key.

These x and y values, along with a particular type of elliptic curve (P_256), a particular algorithm
(ECDSA256), and the kID are used to generate an asymmetric, elliptic-curve based key with help from a
third-party cryptography library (Nimbus JOSE/JWT). which is used to verify the authenticity of the
signature section of the JWT. The relevant Java code from SCAD’s UserApiImpl class is shown in figure
4.2.4.

Figure 4.2.4
Java code snippet for JWT verification.

A verified JWT indicates that; 1) the token was issued by Yahoo, and 2) the token has never been
modified. Once the token is verified, the user data contained in the payload section can be trusted as
authentic and used.

4.2.5 Basic Authentication

In addition to securing SCAD at the application level with OAuth2 and OpenIDConnect, SCAD contains
an additional, more general layer of security for its REST services. Although SCAD has a microservice

27

ECKey key = new ECKey.Builder(Curve.P_256, x, y)
 .algorithm(JWSAlgorithm.ES256)
 .keyID(kId)
 .build();

JWSVerifier verifier = new ECDSAVerifier(key);
SignedJWT signedJWT = SignedJWT.parse(idToken);
Boolean verified = signedJWT.verify(verifier);

if (!verified) {
return Response.status(Response.Status.UNAUTHORIZED).entity(“Your
SCD id token’s signature could not be verified.”).build();

}

architecture, its current version is not designed to expose any REST service to a consuming client other
than SCAD’s front end. Therefore, all requests made to a SCAD service from a non-SCAD client should
be rejected.

We implement this feature with basic authentication, a technique whereby a username/password
combination is sent from SCAD’s front-end on every REST call (as a Base64 encoded header). Although
it is possible to implement basic authentication on the server side with code, the JEE application server
that we use (Thorntail) can be configured to provide basic authentication. We use this configuration-based
approach by including the following snippet in our project-local.yml configuration file.

Figure 4.2.5
Thorntail configuration for basic authentication.

We also include the following in our jboss-web.xml file.

Figure 4.2.5a
JEE web application server configuration for basic authentication.

It is worth noting that this basic authentication, combined with SCAD’s exclusive use of HTTPS,
prevents non-SCAD users (e.g. spammers, bots, etc.) from infiltrating our system, but it does not provide
any protection against a malicious actor who is also a SCAD user. A SCAD user can access the basic auth
username/password combination directly from their browser.

28

security:
 security-domains:
 classic-authentication:
 login-modules:
 scad-ba-rs:
 code: org.jboss.security.auth.spi.UsersRolesLoginModule
 flag: required
 module-options:
 userProperties: ${env.SCAD_USERS_PATH}
 rolesProperties: ${env.SCAD_ROLES_PATH}
 hashAlgorithm: SHA-256
 hashEncoding: base64

<jboss-web>
<context-root>scadservices</context-root>
<security-domain>scad-basicauth</security-domain>

</jboss-web>

4.3 Code Base

4.3.1 Front-end/User Interface

SCAD’s front-end/UI microservice repository consists of approximately 10,000 lines of code contained in
89 files organized into 17 directories. The breakdown by file type is shown in the figure below.

Figure 4.3.1
Breakdown of SCAD’s front-end/UI code base by file type. Image files are .png, .svg, .ico, or .jpeg.

SCAD’s front-end/UI project directory structure is shown in figure 4.3.1b. It is worth noting that prior to
deployment, the Vue.js framework is compiled and packaged by WebPack, which ultimately converts the
.vue and .styl files into standard JavaScript (.js) files and cascading style sheets (.css). Hence, in
production, only a lightweight web server is required because code is never executed on the server side. It
is simply returned as a static asset.

Also note the presence of a single .html file, the hallmark of a single page application (SPA). SCAD’s
only .html file is index.html, which has only 17 lines of markup.

Figure 4.3.1a
Content of index.html, SCAD’s only .html file.

29

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,initial-scale=1.0">
 <link rel="icon" href="<%= BASE_URL %>favicon.ico">
 <title>scad-ui</title>
 </head>
 <body>
 <noscript>
 We're sorry but scad-ui doesn't work properly without JavaScript enabled. Please
enable it to continue.
 </noscript>
 <div id="app"></div> <!-- built files will be auto injected -->
 </body>
</html>

Figure 4.3.1b
Directory structure of SCAD’s front-end/UI microservice. Note: the three boxes denoted “src” refer to the

same directory.

4.3.2 Node.js Microservice

SCAD’s Node.js back-end microservice repository consists of approximately 500 lines of code contained
in 15 files organized into 10 directories. The breakdown by file type and directory structure is shown in
figures 4.3.2 and 4.3.2a below.

30

Figure 4.3.2
Breakdown of SCAD’s Node.js code base repository by file type.

Figure 4.3.2a
Directory structure of SCAD’s Node.js microservice.

31

4.3.3 JEE Microservice

SCAD’s JEE microservice repository consists of approximately 15,000 lines of source code contained in
93 files and organized into 24 directories. The breakdown by file type is as follows:

Figure 4.3.3
Breakdown of SCAD JEE back-end code base by file type.

SCAD’s maven-style project directory structure is shown in figures 4.3.3a and 4.3.3b below.

32

Figure 4.3.3a
Directory structure of SCAD’s JEE back-end microservice. The directory structure of the main source

files (red box) is shown in figure 4.3.3b.

33

Figure 4.3.3b
Directory structure of Java classes in SCAD’s edu.ccsu.cs595.capstone.scadservices package, the main

source code of the JEE back-end.

34

4.3.4 Swagger

SCAD documents its REST endpoints with an extremely useful API documentation tool called Swagger.
To use this tool, back-end REST endpoints are annotated with @Api, @ApiOperation, and @ApiParam
and the Swagger .jar file is included as a runtime dependency of Thorntail (SCAD’s JEE application
server).

Consider the code of SCADLeaugeApi.java interface shown below. Highlighted in green are the Swagger
annotations.

35

package edu.ccsu.cs595.capstone.scadservices.api;

import edu.ccsu.cs595.capstone.scadservices.EndpointConstants;
import edu.ccsu.cs595.capstone.scadservices.dto.SCADLeagueDto;
import edu.ccsu.cs595.capstone.scadservices.dto.SCADLeagueListDto;
import edu.ccsu.cs595.capstone.scadservices.exception.AuthorizationFailedException;
import edu.ccsu.cs595.capstone.scadservices.exception.MissingParameterException;
import io.swagger.annotations.Api;
import io.swagger.annotations.ApiOperation;
import io.swagger.annotations.ApiParam;

@ApplicationScoped
@Path(EndpointConstants.SCAD)
@Api(value = EndpointConstants.LEAGUE, tags = "SCAD League APIs", description = "Get League settings from
SCAD system")
public interface SCADLeagueApi {

@GET
@Path(EndpointConstants.LEAGUE + "/default")
@ApiOperation(value = "Get default user League from SCAD by season", notes = "Returns default user
League from SCAD by season", response = SCADLeagueDto.class)
@Produces({ MediaType.APPLICATION_JSON })
public Response getDefaultUserSCADLeagueBySeason() throws AuthorizationFailedException,
RuntimeException;

@PUT
@Path(EndpointConstants.LEAGUE + "/default/update/{id}")
@ApiOperation(value = "Update a SCAD League default indicator for specified Id", notes = "Update
League default indicator in SCAD system", response = SCADLeagueDto.class)
@Produces({ MediaType.APPLICATION_JSON })
public Response updateSCADLeagueDefaultIndicator(

@ApiParam(value = EndpointConstants.RESOURCE_ID, required = true)
@PathParam(value = EndpointConstants.ID) Long id)
throws AuthorizationFailedException, RuntimeException;

@GET
@Path(EndpointConstants.LEAGUE+ "/{id}")
@ApiOperation(value = "Get League from SCAD by id", notes = "Returns League from SCAD by id",
response = SCADLeagueDto.class)
@Produces({ MediaType.APPLICATION_JSON })
public Response getSCADLeague(

@ApiParam(value = EndpointConstants.RESOURCE_ID, required = true)
@PathParam(EndpointConstants.ID) Long id)
throws AuthorizationFailedException, RuntimeException;

@PUT
@Path(EndpointConstants.LEAGUE + "/{id}")
@ApiOperation(value = "Update a SCAD League resource", notes = "Update League additional settings in
SCAD system", response = SCADLeagueDto.class)
@Produces({ MediaType.APPLICATION_JSON })

Figure 4.3.4
The Java code in SCAD’s SCADLeagueApi.java file. Highlighted in green are the Swagger annotations.

When the development server is started, the Swagger annotations in the SCADLeagueApi.java file enable
the runtime environment to create a GUI tool where those endpoints can be easily accessed from a web
browser.

36

@Consumes({ MediaType.APPLICATION_JSON })
public Response updateSCADLeague(

@ApiParam(value = EndpointConstants.RESOURCE_ID, required = true)
@PathParam(value = EndpointConstants.ID) Long id,
@ApiParam(value = EndpointConstants.PUTPROPOSED, required = true)
SCADLeagueDto proposed)
throws MissingParameterException, AuthorizationFailedException, RuntimeException;

@DELETE
@Path(EndpointConstants.LEAGUE + "/{id}")
@ApiOperation(value = "Delete a SCAD League resource", notes = "Delete League additional settings
from SCAD system", response = Boolean.class)
@Produces({ MediaType.APPLICATION_JSON })
public Response deleteSCADLeague(

@ApiParam(value = EndpointConstants.RESOURCE_ID, required = true)
@PathParam(value = EndpointConstants.ID) Long id)
throws MissingParameterException, AuthorizationFailedException, RuntimeException;

@GET
@Path(EndpointConstants.LEAGUE + "/yahoo/{leagueId}")
@ApiOperation(value = "Get League from SCAD by yahoo leagueId", notes = "Returns League from SCAD by
yahoo leagueId", response = SCADLeagueDto.class)
@Produces({ MediaType.APPLICATION_JSON })
public Response getSCADLeagueByYahooLeague(

@ApiParam(value = EndpointConstants.LEAGUE_RESOURCE_ID, required = true)
@PathParam(EndpointConstants.LEAGUEID) Long leagueId)
throws AuthorizationFailedException, RuntimeException;

}

Figure 4.3.4a
GUI tool created by Swagger as a result of including Swagger’s annotations in the SCADLeagueApi.java
interface file. The red box surrounds the six endpoints that correspond to the six interface methods in the

code.

The Swagger tool not only documents the REST endpoints, but also allows the developer to test the
endpoints with various parameters and headers.

37

Figure 4.3.4b
A screenshot of Swagger’s sample response when accessing SCAD’s /scad/league/default/update/{id}
endpoint. In this case, the HTTP verb is “PUT”, and its function is to set a certain league as the default.

Swagger is a particularly valuable tool for SCAD developers, because SCAD’s front-end/UI is a separate
microservice than SCAD’s back-end REST services, so having clearly documented REST endpoints (with
sample return payloads) allows the front-end/UI developers to work independently of the back-end team.
This prevents “hold and wait” situations in development and significantly increases productivity.

The Swagger .jar files are included in SCAD via a project dependency configured in SCAD’s pom.xml as
shown below:

38

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>swagger</artifactId>
</dependency>
<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>swagger-webapp</artifactId>
</dependency>

Figure 4.3.4c
Snippet of SCAD’s pom.xml file showing how SCAD includes the Swagger tool.

4.4 Data Models

4.4.1 Disjointness of SCAD’s Models and Yahoo’s Models.

Yahoo’s domain models contain seven primary resources: game, league, team, roster, player, transaction,
and user. Yahoo’s API enables access to these resources by making REST calls to its urls. For example, if
we call https://fantasysports.yahooapis.com/fantasy/v2/league/390.l.22351?format=json and include the
appropriate security headers, we get the following JSON payload of a Yahoo league resource.

Figure 4.4.1
Raw JSON returned from a direct REST call made to Yahoo’s league API. Of course, the payload is

missing any salary cap data, because it comes directly from Yahoo.

39

{
 "fantasy_content": {

"xml:lang": "en-US",
"yahoo:uri": "/fantasy/v2/league/390.l.22351",
"league": [
 {

"league_key": "390.l.22351",
"league_id": "22351",
"name": "Salary Cap Dynasty 2019",
"url": "https://football.fantasysports.yahoo.com/archive/nfl/2019/22351",
"logo_url": false,
"draft_status": "postdraft",
"num_teams": 12,
"edit_key": "16",
"weekly_deadline": "",
"league_update_timestamp": "1577871056",
"scoring_type": "head",
"league_type": "private",
"renew": "380_34068",
"renewed": "399_13088",
"iris_group_chat_id": "EWFTYULT45AEXPDOCQXVOC55XQ",
"allow_add_to_dl_extra_pos": 0,
"is_pro_league": "0",
"is_cash_league": "0",
"current_week": "16",
"start_week": "1",
"start_date": "2019-09-05",
"end_week": "16",
"end_date": "2019-12-23",
"is_finished": 1,
"game_code": "nfl",
"season": "2019"

 }
],
"time": "18.115997314453ms",
"copyright": "Data provided by Yahoo! and STATS, LLC",
"refresh_rate": "60"

 }
}

By looking at the JSON payload, we can see the properties and structure of Yahoo’s “league” resource.

SCAD also has a league resource, persisted in a MySQL database and designed specifically to have one
linking field (league_id ↔ yahooLeagueId), but otherwise be completely disjoint from Yahoo’s league
resource. This SCAD league resource is accessed by SCAD’s front-end/UI at the url
https://<scad_top_level_domain>/scadservices/api/scad/league/yahoo/22351. It returns a JSON payload
like the one shown below.

Figure 4.4.1a
JSON payload returned from a REST call made to SCAD’s league API. Although this SCAD league and

the Yahoo league in figure 4.4.1 refer to the same resource, notice how their fields are disjoint.

40

{
 "yahooLeagueId": 22351,
 "yahooGameId": 390,
 "seasonYear": 2019,
 "leagueManagers": 12,
 "rookieDraftRds": 3,
 "rookieDraftStrategy": "Message Board",
 "rookieWageScale": "Standard",
 "teamSalaryCap": 250,
 "leagueSalaryCap": 3000,
 "salaryCapExemptionLimit": 25,
 "irReliefPerc": 50,
 "franchiseTagDiscount": 50,
 "franchiseTagSpots": 1,
 "tradingDraftPickYears": 5,
 "qbMin": 2,
 "qbMax": 5,
 "rbMin": 4,
 "rbMax": 7,
 "wrMin": 5,
 "wrMax": 8,
 "teMin": 2,
 "teMax": 4,
 "kMin": 0,
 "kMax": 2,
 "defMin": 2,
 "defMax": 4,
 "isDefault": true,
 "ownerGuid": "2OMLCT3C2A42Z3FCGWJZCIDYLU",
 "renewSCADLeagueId": 0,
 "rosterSpotLimit": 0,
 "isCurrentlyLoggedInUserACommissioner": true,
 "id": 1,
 "createdBy": "2OMLCT3C2A42Z3FCGWJZCIDYLU",
 "createdAt": "2020-04-10T14:54:51Z",
 "modifiedBy": "2OMLCT3C2A42Z3FCGWJZCIDYLU",
 "modifiedAt": "2020-04-10T14:54:51Z"
}

SCAD is built on top of Yahoo, so the primary design objective for SCAD’s persistent entities is to create
domain models that 1) refer to Yahoo resources, and 2) have property sets that are disjoint from those
resources. SCAD’s persisted entities are detailed in the next section.

4.4.2 Relational Model

Remarkably, SCAD version 1.0.0 only requires three tables in its relational database. The entities are
illustrated in figure 4.4.2 below.

41

Figure 4.4.2

Entity-relationship diagram of SCAD’s relational database. Note the lack of any relationship between
scad_league_team and scad_league_player. In fact, the relationship does exist, but the linking entity is a

“roster”, which SCAD does not persist, because it would duplicate data and violate SCAD’s design
principle of maintaining disjointness from Yahoo.

42

4.4.3 Hibernate

SCAD uses the popular Hibernate framework for its object-relational mapper (ORM), obviating the need
for direct SQL queries to the database. Since Thorntail includes fractions for Hibernate, implementing the
ORM is accomplished in SCAD by including the Thorntail dependency in SCAD’s pom.xml, registering
the persistence-unit and entity classes in the persistence.xml file, and creating an EntityManagerProducer
class that is empty except for an EntityManager member variable annotated with @Produces, and
@PersistenceContext.

Figure 4.4.3
Snippet from SCAD’s pom.xml illustrating how SCAD includes Hibernate ORM.

Figure 4.4.3a
Snippet from SCAD’s persistence.xml illustrating how Hibernate, MySQL, and the entity classes are

linked.

Figure 4.4.3b
Snippet from SCAD’s EntityMangerProducer class illustrating Hibernate’s entry point into SCAD’s

application code.

43

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>jpa</artifactId>
</dependency>

<persistence-unit name=”scadSvcPu” transaction-type=”JTA”>
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>java:/jdbc/ccsu/ScadDS</jta-data-source>
 <class>edu.ccsu.cs595.capstone.scadservices.entity.SCADLeague</class>
 <class>edu.ccsu.cs595.capstone.scadservices.entity.SCADLeagueTeam</class>
 <class>edu.ccsu.cs595.capstone.scadservices.entity.SCADLeaguePlayer</class>
</persistence unit>

package edu.ccsu.cs595.capstone.scadservices.config;

import javax.enterprise.inject.Produces;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;

public class EntityManagerProducer {

 @Produces
 @PersistenceContext(name = “scadSvcPu”, unitName = “scadSvcPu”)
 @ScadDatabase
 private EntityManager scadEm;
}

4.4.4 Cleaning Yahoo’s Raw Data

Although SCAD’s front-end/UI can call Yahoo’s APIs directly, the raw JSON payloads returned from
Yahoo often contain superfluous fields (e.g. refresh_rate, copyright) and are frequently returned as untidy
structures with empty arrays, singleton JSON sub-objects, and unnecessary nesting.

Managing SCAD and Yahoo payloads on the front-end is much easier if the payloads have the same
structure. To this end, SCAD possesses a collection of endpoints that essentially mimic Yahoo’s
endpoints but return cleaner payloads. For example, the Yahoo API endpoint that returns the payload
shown in figure 4.4.1 can be called through SCAD at
http://<scad_top_level_domain>/scadservices/api/yahoo/league/22351, returning a cleaner version of the
same data.

Figure 4.4.4
JSON payload returned from one of SCAD’s “cleaning” endpoints. The “unclean” version of this payload

returned directly from Yahoo is shown in figure 4.4.1.

4.4.5 JAX-RS

SCAD heavily depends on JAX-RS, the Java API for RESTful web services. SCAD’s JEE runtime
environment (Thorntail) can essentially transform a standard Java class into a REST endpoint with the

44

{
 "league_key": "390.l.22351",
 "league_id": "22351",
 "name": "Salary Cap Dynasty 2019",
 "url": "https://football.fantasysports.yahoo.com/archive/nfl/2019/22351",
 "logo_url": false,
 "draft_status": "postdraft",
 "num_teams": 12,
 "edit_key": "16",
 "weekly_deadline": "",
 "league_update_timestamp": "1577871056",
 "scoring_type": "head",
 "league_type": "private",
 "renew": "380_34068",
 "renewed": "399_13088",
 "iris_group_chat_id": "EWFTYULT45AEXPDOCQXVOC55XQ",
 "allow_add_to_dl_extra_pos": 0,
 "is_pro_league": "0",
 "is_cash_league": "0",
 "current_week": "16",
 "start_week": "1",
 "start_date": "2019-09-05",
 "end_week": "16",
 "end_date": "2019-12-23",
 "is_finished": 1,
 "game_code": "nfl",
 "season": "2019"
}

addition of a simple @Path annotation at the class-level, parameterized by a string indicating the relative
url mapped to that class.

At the method level, the @Path annotation denotes the url relative to the class-level @Path annotation,
and the @Produces annotation indicates the desired MIME type. Methods of a class annotated with
@Path can essentially be thought of as the “entry points” for the incoming HTTP request, where SCAD’s
business logic begins. In addition to @Path, the methods must also be annotated with the appropriate
HTTP verb (@GET, @PUT, @POST, @DELETE, etc.).

Figure 4.4.5
Code snippet from SCAD’s DashboardApi interface, illustrating the JAX-RS @Path annotations

responsible for properly routing an HTTP request to the getDashBoardDetails() method.

In addition to request mappings, SCAD makes use of JAX-RS for request and response filtering. Every
incoming HTTP request, after passing the basic-authentication security measure configured in Thorntail,
will filter through SCAD’s RequestCORSFilter class, which contains two JAX-RS hooks; 1) being
annotated at the class level with @Provider notifies the JEE runtime environment that the class has
special significance to JAX-RS; 2) implementing javax.ws.rs.container.ContainerRequestFilter tells the
runtime environment that all requests should filter through the “filter()” method of the class.

45

package edu.ccsu.cs595.capstone.scadservices.api

import javax.enterprise.context.ApplicationScoped;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.Response;

import edu.ccsu.cs595.capstone.scadservices.EndpointConstants;

@ApplicationScoped
@Path(EndpointConstants.SCAD)
public interface DashboardApi {

 @GET
 @Path(EndpointConstants.DASHBOARD + “/details”)
 @Produces({ MediaType.APPLICATION_JSON })
 public Response getDashboardDetails() throws RuntimeException;
}

package edu.ccsu.cs595.capstone.scadservices.config;

import java.inject.Inject;
import javax.ws.rs.container.ContainerRequestContext;
import javax.ws.rs.container.ContainerRequestFilter;
import javax.ws.rs.ext.Provider;
import edu.ccsu.cs595.capstone.scadservices.security.SCADSecurityManager;

@Provider
public class RequestCORSFilter implements ContainerRequestFilter {
 @Inject

Figure 4.4.5a
Code snippet of RequestCORSFilter class, illustrating how SCAD uses two JAX-RS hooks (highlighted

in green) to convert the class into one whose filter() method is invoked on every incoming request.

4.4.6 From Request to Response

When a user accesses SCAD’s landing page, SCAD serves the index.html file from its Node.js back-end
microservice along with many JavaScript, CSS, and image files. Being a single page web application, if
the user subsequently clicks to visit another page, SCAD does not retrieve another .html page, but rather
triggers the execution of client-side JavaScript routines that retrieve necessary static assets from the
Node.js server (done automatically as part of the Vue.js framework), and also fetches data by making
REST calls to SCAD’s service endpoints.

A typical pattern in SCAD is shown in figure 4.4.6, where SCAD’s front-end/UI makes a REST call to
retrieve a SCAD resource followed by another REST call to retrieve a Yahoo resource of the same type
(league). These resources are then combined and displayed on the page as needed.

It is worth noting that this “combining” of SCAD and Yahoo resources could theoretically be done on the
back-end and served to the front-end/UI as a single payload. The motivation for pushing the extra logic to
the front-end is simply that SCAD’s front-end developer is also a product owner who understands the
business logic better than the back-end developers.

46

 SCADSecurityManager sm;

 @Override
 public void filter(ContainerRequestContext requestContext) {
 sm.setIDTOKEN(requestContext.getHeaderString(sm.ID_TOKEN_HEADER);
 sm.setACCESSTOKEN(requestContext.getHeaderString(sm.ACCESS_TOKEN_HEADER);
 sm.setAUTHORIZATION(requestContext.getHeaderString(sm.AUTHORIZATION_HEADER);
 }
}

Figure 4.4.6
A high-level sequence diagram showing SCAD’s rendering of the “dashboard” page.

The code executed when a SCAD endpoint creates and returns a JSON payload is organized into 5 layers.

Layer 1 - API Implementation Classes:
An incoming HTTP request is routed by the JEE application server to an appropriate method on an API
implementation class (e.g. SCADLeagueApiImpl, DashboardApiImpl, etc.). These api implementation
classes constitute layer 1. As shown in figure 4.4.6a, the class- and method-level @Path annotation on the
interface implemented provide the mappings from the url to the method.

Layer 2 - Data Transfer Object Layer (DTO)
Frequently, JSON payloads being consumed and produced by SCAD’s endpoints require some
modification or decoration prior to being marshalled or unmarshalled. A suite of data transfer objects
(DTOs) serves this purpose and constitutes layer 2. In the cases of PUTs and POSTs, where the endpoints
must unmarshall JSON objects early on in the request lifecycle, the DTO layer is accessed before layers 3,
4, and 5. However, for GETs and DELETEs, the DTO layer will not be accessed until right before
marshalling, which occurs after layers 3, 4, and 5 have been accessed.

47

Figure 4.4.6a

Code snippets from SCADLeagueApi.java and SCADLeagueApiImpl.java illustrating layer 1 of SCAD’s
5 logical layers. Also shown is a snippet from SCADLeagueDto.java illustrating level 2. Highlighted in

green are the annotations that provide the necessary information for routing the HTTP request to the
appropriate method. Highlighted in red is the code responsible for transitioning to layer 3. Highlighted in
blue is the data transfer object (DTO) of layer 2 that is marshalled to JSON, and highlighted in orange are
the annotations necessary for converting the SCADLeagueDto class from a regular Java object to a true

DTO.

48

SCADLeagueApi.java

@Path(EndpointConstants.SCAD)
public interface SCADLeagueApi {

@GET
@Path(EndpointConstants.LEAGUE+ "/{id}")
@Produces({ MediaType.APPLICATION_JSON })
public Response getSCADLeague(
@PathParam(EndpointConstants.ID) Long id) throws RuntimeException;

}

SCADLeagueApiImpl.java

public class SCADLeagueApiImpl implements SCADLeagueApi {

@Inject
SCADLeagueService slSvc;

@Override
public Response getSCADLeague(Long id) throws RuntimeException {

hHlpr.isHeaderAccessValid(sm);
SCADLeagueDto result = slSvc.getSCADLeague(id);
if (Objects.isNull(result)) {

return Response.status(Response.Status.NOT_FOUND).build();
}
return Response.status(Response.Status.OK).entity(result).build();

}
}

SCADLeagueDto.java

@JsonIgnoreProperties(ignoreUnknown = true)
@JsonSerialize(include=JsonSerialize.Inclusion.NON_NULL)
@JsonInclude(JsonInclude.Include.NON_EMPTY)
public class SCADLeagueDto extends AuditedDto {

private Long id;
private Long yahooGameId;
private Long yahooLeagueId;
...

}

Layer 3 - Service Layer
The methods of layer 1 call upon classes of the service layer (e.g. SCADLeagueService) to perform
business logic. These classes typically contain many injection points for other services and utilities.

Figure 4.4.6b

Code snippet from SCADLeagueService.java illustrating layer 3. Highlighted in red is the code
responsible for transitioning to layer 4. Note the presence of many injected services and utilities.

Layer 4 - Data Access Object Layer (DAO)
The service layer methods frequently require access to persisted SCAD entities, but rather than including
direct access to the javax.persistence.EntityManager in the service layer, a suite of data access object
(DAO) classes exists, forming layer 4. Typically, the only injected resource to a DAO is the JPA entity
manager and most methods resemble SQL or HQL queries.

49

SCADLeagueService.java

public class SCADLeagueService {

 @Inject
 YahooClientBuilder yahoo;

 @Inject
 SCADLeagueTeamService sltSvc;

 @Inject
 SCADLeaguePlayerService slpSvc;

 @Inject
 LeagueService lSvc;

@Inject
SCADLeagueDao slDao;

public SCADLeagueDto getSCADLeague(Long id) throws RuntimeException {

SCADLeagueDto result = null;
SCADLeague slEntity = slDao.find(id);
result = this.entityToDto(slEntity);
return result;

}
}

SCADLeagueDao.java

public class SCADLeagueDao {

@Inject
@ScadDatabase
private EntityManager scadEm;

Figure 4.4.6c

Code snippet from SCADLeagueDao.java illustrating layer 4. Highlighted in red is the code responsible
for transitioning to layer 5.

Layer 5 - Entity Layer
The DAO methods call on a javax.persistence.EntityManager instance to query SCAD’s MySQL database
and use its object relational mapper technology (e.g. Hibernate) to convert the relational representation of
the entity to a populated Java object. This is layer 5, and the code implementing the layer 5 methods is
close enough to the persisted data itself that it no longer belongs to SCAD.

Figure 4.4.6d

Code snippet from javax.persistence.EntityManager.java illustrating level 5, the entity level. Notice that
methods at this deep level are not implemented by SCAD.

50

public SCADLeague find(Long id) {

return scadEm.find(SCADLeague.class, id);
}

}

EntityManager.java

package javax.persistence;

public interface EntityManager {
<T> T find(Class<T> var1, Object var2)

}

Figure 4.4.6e

A sequence diagram showing the flow of execution through the 5 logical layers of a SCAD’s back-end
REST service in the process of serving an HTTP request for a SCAD league object.

Although the majority of requests made from SCAD’s front-end/UI to its back-end REST services
traverse all five layers, this is not the case for requests made to SCAD for Yahoo-specific resources (e.g.
/yahoo/league/{id}). For these requests, data is not persisted in SCAD’s relational database, but rather at
Yahoo. Therefore, the entity layer is replaced with a REST client layer.

Furthermore, since the JSON data is returned from Yahoo as a java.lang.String, the DAO and DTO layers
are unnecessary and are replaced with JSON object “formatting” functions in the service layer that
process and clean the raw data. One such function is shown below.

51

LeagueService.java

private String formatLeagueData(JsonObject leagueObj) throws RuntimeException {
 String result = null;
 if (Objects.nonNull(leagueObj)) {
 try {

 JsonElement error = leagueObj.get("error");
 if (Objects.isNull(error)) {
 JsonObject fantasyContent = leagueObj.get("fantasy_content").getAsJsonObject();
 JsonArray league = fantasyContent.get("league").getAsJsonArray();
 JsonObject ldata = league.get(0).getAsJsonObject();
 result = ldata.toString();
 } else {
 LOG.error("League object has error: {} ", error);

Figure 4.4.6f

A “formatting” method located in SCAD’s service layer used to clean raw JSON strings returned from
Yahoo.

SCAD’s formatting functions make heavy use of Google’s GSON library (com.google.gson) with classes
such as JsonArray, JsonElement, JsonObject, and JsonParser to manipulate the raw JSON data returned
from Yahoo.

Figure 4.4.6g
A sequence diagram showing the process of serving a web request for a Yahoo league object. Note the

absence of the DAO, DTO, and entity layers.

52

 result = "ERROR:" + error.toString();
 }

 } catch (Exception ex) {
 throw new RuntimeException(ex.getMessage());

 }
 }
 return result;
}

4.5 REST Services

4.5.1 Endpoints

SCAD version 1.0.0 contains a total of 45 REST endpoints. Their url mappings and descriptions are
shown in the table below:

Dashboard:

User:

Email:

Yahoo League:

53

Relative URL Description

GET /dashboard/details Returns dashboard details of SCAD UI.

Relative URL Description

GET /user Returns the users details from

Relative URL Description

POST /email/registered/{leagueId} Sends an email to all registered users of a particular league.

POST /email/request/{leagueId} Sends an email to the owner of a particular league.

Relative URL Description

GET /yahoo/league/all Returns all Yahoo leagues for the current season for the currently logged in user.

GET /yahoo/league/commissioner/all Returns all Yahoo leagues of which the current user is a commissioner.

GET /yahoo/league/{leagueId} Returns the specified Yahoo league.

GET /yahoo/league/{leagueId}/teams Returns all teams associated with the specified league.

GET /yahoo/league/{leagueId}/myTeam Returns the currently logged in user’s team associated with the specific league.

SCAD League:

Players:

54

GET /yahoo/league/{leagueId}/myPlayers Returns all players associated with the current user for a specified league.

GET /yahoo/league/{leagueId}/settings Returns the league settings for the specified league.

GET /yahoo/league/{leagueId}/standings Returns the standings for the specified league.

GET /yahoo/league/{leagueId}/team/{teamId}/roster Returns the team and roster details for the specified team and league.

GET /yahoo/league/{leagueId}/team/{teamId}/players Returns the players of the specified team and league.

GET /yahoo/league/{leagueId}/players Returns all players associated with the given league.

Relative URL Description

GET /scad/league/default Returns the current season’s default SCAD league for the current user.

PUT /scad/league/default/update/{id} Updates the “default” indicator for a specified SCAD league.

GET /scad/league/all Returns all current user’s SCAD leagues for the present season.

GET /scad/league/{id} Returns the specified SCAD league.

POST /scad/league/ Creates a new SCAD league resource.

PUT /scad/league/{id} Updates the specified SCAD league.

DELETE /scad/league/{id} Deletes the specified SCAD league.

GET /scad/league/yahoo/{leagueId} Returns the SCAD league associated with the specified Yahoo league Id.

Relative URL Description

GET /scad/player/{id} Returns the specified SCAD player

GET /scad/league/{scadLeagueId}/player/all Returns all SCAD players from the specified SCAD league.

GET /scad/league/{scadLeagueId}/player/myPlayers Returns all SCAD players of current user for the specified SCAD league.

GET /scad/league/yahoo/{leagueId}/player/myPlayers Returns all SCAD players of current user for the specified Yahoo league.

GET /scad/league/yahoo/{leagueId}/player/all Returns all SCAD players for the specified Yahoo league.

GET /scad/league/{scadLeagueId}/player/{id} Returns SCAD player for the specified SCAD league and player id.

GET /scad/league/yahoo/{leagueId}/player/{playerId} Returns a SCAD player for the specified Yahoo league and player id.

GET /scad/league/{scadLeagueId}/team/{scadTeamId}/players Returns all SCAD players for the specified SCAD league and team.

Team:

Table 4.5.1
Relative urls and descriptions of SCAD’s 45 RESTful endpoints, organized by resource. The base url is

https://<scad_top_level_domain>/scadservices/api.

4.5.2 Error and Exception Handling

Gracefully handling 400-level errors in a RESTful web service amounts to converting exceptions or error
states into properly formatted HTTP responses. SCAD version 1.0.0 leaves much to be desired in this
regard, returning 404 responses with generic error messages for most exceptional behavior.

The SCAD team’s aspirational goals for error and exception handling in the next release are twofold.

First, return a 401-Unauthorized response early on in the request/response lifecycle if either the
access-token or id_token header is missing. By convention, SCAD’s front-end/UI includes an

55

GET /scad/league/yahoo/{leagueId}/team/{teamId}/players Returns all SCAD players for the specified Yahoo league and team.

POST /scad/player Creates a new SCAD player.

PUT /scad/player/{id} Updates a SCAD player.

DELETE /scad/player/{id} Deletes a SCAD player.

Relative URL Description

GET /scad/team/{id} Returns a SCAD team for the specified Yahoo team id.

GET /scad/league/{scadLeagueId}/team/all Returns all SCAD teams for the specified SCAD league id.

GET /scad/league/{scadLeagueId}/team/myTeam Returns current user’s SCAD team for specified SCAD league id.

GET /scad/league/yahoo/{leagueId}/team/myTeam Returns current user’s SCAD team for specified Yahoo league id.

GET /scad/league/yahoo/{leagueId}/team/all Returns all SCAD teams for the specified Yahoo league id.

GET /scad/league/{scadLeagueId}/team/{id} Returns a SCAD team for the specified SCAD league and team id.

GET /scad/league/yahoo/{leagueId}/team/{teamId} Returns a SCAD team for the specified Yahoo league and team id.

POST /scad/team Creates a SCAD team.

PUT /scad/team/{id} Updates a SCAD team.

DELETE /scad/team/{id} Deletes a SCAD team.

access_token and id_token header on every REST call, so if either header is null, this should be picked up
immediately, even before the resource method is matched with the incoming HTTP request.

This can be accomplished with a class implementing javax.ws.rs.container.ContainerRequestFilter that is
annotated with @PreMatching.

Second, use the standard control flow of exception handling to properly name and propagate exceptions
up to the API implementation layer. At this layer, convert the exceptions into javax.ws.rs.core.Response
objects with an appropriate 400-level status code (based on the exception type), and attach the error
message from the exception to the JSON payload returned.

A sequence diagram for proper error and exception handling in SCAD version 1.1.0 is shown in figure
4.5.2 below.

Figure 4.5.2
Sequence diagram illustrating how SCAD version 1.1.0 will convert exceptions into appropriate 400-level

HTTP responses.

56

The JSON payload is shown in figure 4.5.2a.

Figure 4.5.2a
Sample JSON payload of the 404 response returned when an exception is thrown.

It is worth mentioning that malformed HTTP requests that cannot be routed to any API implementation
method by the JEE runtime environment are handled by JEE. They return a 404 “Not Found” response
with a simple error message such as “RESTEASY003210: Could not find resource for full path:
http://localhost:8080/scadservices/api/ya” contained in the body.

4.5.3 Email

Sending emails to current and prospective SCAD users is an integral component of the application. For
example, if a user wishes to register their Yahoo league with SCAD, but they are not a commissioner of
their Yahoo league, they can click a button in SCAD’s UI to send an email to the commissioner
requesting the registration of that particular Yahoo league with SCAD.

To support emailing, SCAD exposes two REST endpoints, “/mail/registered/{leagueId}” and
“/mail/request/{leagueId}”, and implements these by including the javax.mail package and using a
version of the basic adapter pattern shown below.

57

{
 "error": {
 "lang": "en-US",
 "description": "The league you are trying to access has no players yet."
 }
}

Figure 4.5.3
UML diagram showing the basic adapter pattern used to implement SCAD’s email service.

We consider the adapter pattern to be warranted here, because it is likely that the component that sends
emails will change in future versions. In fact, Yahoo itself contains an email API that is accessed via
HTTP rather than SMTP, so using the adapter pattern will allow a seamless switchover by simply creating
another appropriate adapter (e.g. YahooWebEmailAdapter) that implements the target interface
EmailAdapter.

58

4.6 User Interface

4.6.1 Landing Page

Upon landing on SCAD’s home page, a user is presented with the screen shown below. If the user is
currently logged in (as shown in the figure), the drawer on the left hand side will be drawn to allow the
user to navigate throughout the application. This page is also visible through the “About” tab.

Figure 4.6.1
Screenshot of SCAD’s landing page (first half).

The figure below shows the second half of the landing/about-us page. Here we have a brief description of
SCAD and what it has to offer its users, along with a button that sends the user to the “Register League”
page. If a user is not logged in, this button is replaced with a “Log In” button.

Figure 4.6.1a
Screenshot of SCAD’s landing page (second half).

59

4.6.2 Register League Page

To register a league with SCAD, users must have an existing fantasy football league already registered
with Yahoo. SCAD limits registration to only league commissioners of the Yahoo registered league. As
the page loads, SCAD will return to the user a list of leagues they are a commissioner of. If leagues exist,
this page will appear and the user can fill out the form to register with SCAD.

Figure 4.6.2
Screenshot of SCAD’s registration page.

If the user tries to register a league with SCAD, but they are not a commissioner of an existing Yahoo
league, the page shown below is displayed. This page gives the user the ability to send an email to their
league’s commissioner to notify them of SCAD’s services.

Figure 4.6.2a
Screenshot of SCAD’s registration page for non-commissioners.

60

4.6.3 Dashboard Page

The dashboard page is the landing spot once a league has been registered for a user. Here, SCAD retrieves
Yahoo league and team details to display an overview to the user while injecting salary cap details for all
teams and players. This page gives users an overview of all teams and their current stance against the
salary cap.

Figure 4.6.3
Screenshot of SCAD’s dashboard page.

4.6.4 League Settings Page

Here a user can view the current SCAD settings for their league. If a user is the commissioner of the
corresponding Yahoo league, they will have access to edit these settings.

Figure 4.6.4
Screenshot of SCAD’s league settings page.

61

4.6.5 Team Page

The team page offers a complete overview of a team. SCAD retrieves Yahoo team details each time the
page is called to ensure the information is up-to-date. Here, users are able to adjust a player's salary and
apply a franchise tag to a player, both of which will update the overall team salary. This page also
supplies a roster breakdown by position, and will notify the user if their roster is above or below roster
restrictions set by SCAD settings. A list of the users upcoming draft picks and current cap exemptions are
listed here as well.

Figure 4.6.5
Screenshot of SCAD’s team page (top half)

Figure 4.6.5a
Screenshot of SCAD’s team page (bottom half).

62

4.6.6 Cap Exemptions Page

Cap exemptions are salary transactions between two teams, typically as part of a larger trade. These are
often executed if a team’s salary is above the salary cap. One team will trade another team a dollar
amount, which is applied to each team's current salary. The giving team will have their overall salary
increased, and the receiving team will have their overall salary decreased by the agreed upon amount.

Figure 4.6.6
Screenshot of SCAD’s cap exemption page.

4.6.7 Draft Picks Page

Dynasty leagues are designed to allow users to keep their entire roster year after year. Subsequently, a
draft at the beginning of each year consists of the new players entering the league. Each user gets one
draft pick per round, but these picks are expendable. Teams often trade draft picks as part of a larger deal,
or reposition themselves in the draft to get a player they strongly desire. This page is designed to track
and manage those draft picks. The edit button in the first column of the table allows the user to edit the
current owner of the draft pick if a pick is traded to another owner.

63

Figure 4.6.7
Screenshot of SCAD’s draft picks page.

4.6.8 Players Page

The “Players Page” displays a table of all the players in SCAD’s database with their corresponding
salaries. Users can not edit or make changes to any SCAD information from this page. It is simply a tool
for users to view and research existing players and how their salaries stack up to others’ across the league.

Figure 4.6.8
Screenshot of SCAD’s players page.

64

4.6.9 My Profile Page

The “My Profile” page is a very basic profile page displaying the users currently registered SCAD and
Yahoo! leagues. A user with multiple SCAD leagues can come to this page to switch between leagues,
and to select a new default league. A default league is the league SCAD pulls first when the page is
loaded. By selecting on a Yahoo! league, SCAD will redirect the user to their Yahoo! homepage. If the
user is a commissioner, they will be presented with a button to register that league with SCAD.

Figure 4.6.9
Screenshot of SCAD’s profile page.

65

5. Conclusion
We conclude this paper with some final reflections about our journey building SCAD from concept to
delivery, as well as the software development process writ large.

5.1 Technical

On the technical side, we find that using a microservice-based architecture is something to be done out of
necessity rather than intrigue. We are thrilled with the experience gained in building SCAD with a
microservice-based architecture but, admittedly, have our doubts about its overall utility compared to its
monolithic counterpart. We find this particularly true for a team of only three developers.

We also find that OAuth2 is much more difficult to understand and implement than it appears at first
glance. However, there is a certain satisfaction that now comes to us in having a basic understanding of
what is going on under the hood when we visit a website and see a link saying, “Login with Google or
Facebook”.

Finally, there is a reason the front-end/UI developer community is flocking to Vue.js. We find it to be an
extremely powerful technology, and are delighted at our choice to use it to build SCAD over more robust
alternatives such as Angular.js and React.js.

5.2 Human

On the human side, we must first acknowledge the immense challenge of building software in a team
composed of developers with varying levels of proficiency. The harsh reality is that one experienced
developer may be able to produce 10 to 100 times more code than a less experienced developer. We find
this aspect of software development to be fundamentally different than, say, bricklaying, where an
experienced bricklayer may be more productive, but not by such magnitudes.

Consequently, maintaining interest, morale, and agency among the team members is an important
component of the project. We find carving out niches (e.g. front-end/UI, back-end, documentation, etc.) in
SCAD for each team member to be particularly helpful in this regard. Few things are more deflating to a
developer than completing a feature only to find out later that it has already been completed by a fellow
developer.

As for our team, we are utterly thrilled with the human component of our experience building SCAD. We
feel extremely fortunate to have had the opportunity to work with one another, and as the project
progressed from the initial whiteboard meeting to the hundreds of hours of code writing, we admit that
our primary motivation for keeping our noses to the grindstone slowly changed from a desire to graduate
from CCSU, to a desire not to let each other down.

66

6. References
1. Coward, Danny Dr. Java EE 7: The Big Picture. Oracle Press, McGraw Hill, 2015.
2. Gupta, Arun Java EE 7 Essentials. O’Reilly Publications Inc., 2015.
3. Neward, Ted Effective Enterprise Java. Addison-Wesley, 2004.
4. Macrae, Callum Vue.js Up & Running: Building Accessible and Performant Web Apps. O’Reilly

Media, Inc. 2018.
5. Fowler, Martin. (2014, Dec). Microservices. Presented at GOTO 2014. Berlin, Germany.
6. Barberttini, Nate. (2018, Feb). OAuth 2.0 and OpenID Connect (in Plain English). Presented at

OktaDev. San Francisco, CA.
7. Sablonniere, Hubert. (2016, Nov). 100% Stateless with JWT (JSON Web Token). Presented at

Devoxx. Antwerp, Belgium.

67

